SMARTGREENS 2021

10th International Conference on Smart Cities and Green ICT Systems

Final Program and Book of Abstracts

28 - 30 April, 2021

http://www.smartgreens.org

SPONSORED BY

PAPERS AVAILABLE AT
Contents

Wednesday Sessions: April 28

Opening Session (10:45 - 11:00)
Room Plenary 1 .. 17

Keynote Lecture (11:00 - 12:00)
Room Plenary 1 .. 17
Driving Automated Vehicles in Complex Conditions, by Bart van Arem 17

Session 1 (12:15 - 13:30)
Room 4: Integration of Smart Appliances .. 17

Session 2 (14:45 - 16:00)
Room Plenary 2: Urban Monitoring and Optimization ... 18
Complete Paper #4: Design of an Urban Monitoring System for Air Quality in Smart Cities, by Andrea Marini, Patrizia Mariani, Alberto Garinei, Stefania Proietti, Paolo Sdringola, Massimiliano Proietti, Lorenzo Menculini and Marcello Marconi ... 18
Complete Paper #30: Application of Pretopological Hierarchical Clustering for Buildings Portfolio, by Loup-Noé Lévy, Jérémie Bosom, Guillaume Guerard, Soufian Ben Amor, Marc Bui and Hai Tran ... 18

Poster Session 1 (16:00 - 17:00)
Room Posters SMARTGREENS I ... 18
Complete Paper #2: Thermal Model of a House using Electric Circuits Analogy, by Xhilda Merkaj, Darjon Dhano and Egliantina Kallucu .. 18
Complete Paper #5: Condition Monitoring for Air Filters in HVAC Systems with Variable Volume Flow, by Oliver Gnepper and Olaf Enge-Rosenblatt ... 19
Room Posters SMARTGREENS II ... 20
Complete Paper #3: Synchronised Power Scheduling of Widely Distributed Refrigerators using IoT, by M. Sabegh and C. Bingham .. 20
Complete Paper #6: A Multi-Scale, Web-based Application for Strategic Assessment of PV Potentials in City Quarters, by Sally Köhler, Rosanny Shombing, Eric Duminil, Volker Coors and Bastian Schröter ... 20
Design of an Urban Monitoring System for Air Quality in Smart Cities

Andrea Marini¹, Patrizia Mariani², Alberto Garinei¹-², Stefania Proietti², Paolo Sdringola³
Massimiliano Proietti¹, Lorenzo Menculini¹, Marcello Marconi¹-²

¹ Idea-Re S.r.l., Perugia, Italy
² Department of Sustainability Engineering, Guglielmo Marconi University, Rome, Italy
³ ENEA Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
Motivations

• Pollution is one of the main problems faced by cities
 • increase in emissions from anthropogenic sources resulting from economic, industrial and demographic development

• High values of pollutants (e.g. atmospheric particulate matter) lead to adverse effects on the environment and human health
 • spread of respiratory, cardiovascular and neurological problems
 • connection between the spread of the Covid-19 pandemic and environmental pollution? [Setti et al., 2020] [Wu et al., 2020] [Fattorini and Regoli, 2020]

• Urban monitoring of pollutants can allow to evaluate and perform actions aimed at reducing pollution in order to safeguard citizens’ health
Overview

• This study proposes a method to design a low-cost urban air quality monitoring system that can be implemented in any small-to-medium-sized smart city

• The monitoring concerns atmospheric particulate matter (PM10 and PM2.5)

• Sensors are connected through a LoRaWAN network

• Location of the sensors are determined in two steps
 1. Analytic Hierarchy Process (AHP) multi-criteria decision-making technique
 2. Cellular Automaton model in order to ensure the best overall coverage of the polluted areas
Case study

- Santa Maria degli Angeli
 - (43°03′32″N 12°34′41″E)
 - Municipality of Assisi (Italy)
 - 8470 inhabitants

- Over the years, the area has experienced an important urban development
 - residential settlement
 - industrial activities (concentrated in the south-west area)

- LoRaWAN network consists of six sensors
Analytic Hierarchy Process (AHP)

• Analytic Hierarchy Process (AHP) is a multi-criteria decision-making technique [Saaty]

• AHP allows to assign priorities to a series of decision-making alternatives and define them on a single scale, relating also parameters that are not directly comparable

• The method is made of three steps:
 • definition of a hierarchy of the problem (final objective, criteria, alternatives)
 • for each hierarchy layer definition of the matrices of pairwise comparisons and computation of the priority vector
 • hierarchical recomposition
Final objective: locations of sensors for air quality monitoring

Criteria layer: three main sources of pollution [Samad & Vogt, 2020]
- Evaluation through a participatory process with the direct involvement of citizens (survey)

Alternatives layer: twelve candidates locations for the sensors
- Evaluation through a more objective method using available data
• Twelve urban sectors (A-L) identified by the three main roads axes and the other main roads
AHP: questionnaires

• Questions:
 • which is the main source of atmospheric pollution among home heating, traffic and the presence of industrial activities?
 • how much the indicated source of pollution is more decisive than the other two, expressing a value in the scale from 1 to 9?
 • subjective assessment of the air quality in the various areas of the town (polluted or clean?)

• The anonymous questionnaires were distributed to a heterogeneous sample of citizens, inhabitants of the study area, of different ages and gender

• 38 questionnaires were collected
AHP: criteria comparison

• Collected values aggregated by means of the geometric mean and approximated to the nearest integer number yielding the pairwise comparisons matrix

<table>
<thead>
<tr>
<th></th>
<th>Home heating</th>
<th>Traffic</th>
<th>Industrial activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Home heating</td>
<td>1</td>
<td>1/7</td>
<td>1/8</td>
</tr>
<tr>
<td>Traffic</td>
<td>7</td>
<td>1</td>
<td>1/5</td>
</tr>
<tr>
<td>Industrial activities</td>
<td>8</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

• Priority vector = normalized principal eigenvector

\[
\begin{pmatrix}
0.0545 \\
0.2331 \\
0.7125
\end{pmatrix}
\]

- home heating
- traffic
- Industrial activities
AHP: alternatives comparison

• **Home heating criterion**: on the basis of the population data in each sector as recorded in the Municipality database

• **Traffic criterion**: considering how each sector is enclosed by main roads

• **Industrial activities criterion**: considering the average distance of each sector from the foundry and the industrial area to the south-west of the town
AHP: hierarchical recomposition

<table>
<thead>
<tr>
<th>Ranking</th>
<th>Sector</th>
<th>Home heating (0.0544)</th>
<th>Traffic (0.2331)</th>
<th>Industrial activities (0.7125)</th>
<th>Global weights</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>G</td>
<td>0.1034</td>
<td>0.2832</td>
<td>0.2008</td>
<td>0.2147</td>
</tr>
<tr>
<td>2</td>
<td>J</td>
<td>0.0431</td>
<td>0.0689</td>
<td>0.2008</td>
<td>0.1614</td>
</tr>
<tr>
<td>3</td>
<td>H</td>
<td>0.0156</td>
<td>0.0271</td>
<td>0.1515</td>
<td>0.1151</td>
</tr>
<tr>
<td>4</td>
<td>K</td>
<td>0.0156</td>
<td>0.1685</td>
<td>0.1017</td>
<td>0.1126</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>0.08</td>
<td>0.0346</td>
<td>0.129</td>
<td>0.1043</td>
</tr>
<tr>
<td>6</td>
<td>L</td>
<td>0.0127</td>
<td>0.2128</td>
<td>0.0275</td>
<td>0.0698</td>
</tr>
<tr>
<td>7</td>
<td>I</td>
<td>0.0482</td>
<td>0.0546</td>
<td>0.0674</td>
<td>0.0634</td>
</tr>
<tr>
<td>8</td>
<td>C</td>
<td>0.1315</td>
<td>0.0546</td>
<td>0.0434</td>
<td>0.0508</td>
</tr>
<tr>
<td>9</td>
<td>E</td>
<td>0.0251</td>
<td>0.0159</td>
<td>0.0411</td>
<td>0.0344</td>
</tr>
<tr>
<td>10</td>
<td>B</td>
<td>0.3174</td>
<td>0.0149</td>
<td>0.0114</td>
<td>0.0288</td>
</tr>
<tr>
<td>11</td>
<td>A</td>
<td>0.171</td>
<td>0.0214</td>
<td>0.0141</td>
<td>0.0244</td>
</tr>
<tr>
<td>12</td>
<td>D</td>
<td>0.0364</td>
<td>0.0434</td>
<td>0.0114</td>
<td>0.0202</td>
</tr>
</tbody>
</table>

Sensors positions as selected by AHP analysis
AHP: sensors locations

[Map with labeled points and urban sectors A-L, indicating potential sensor locations and sensors locations selected by AHP.]
Cellular automaton (CA)

- A cellular automaton is a **discrete dynamic system**
- It consists of a set of elements, called **cells**, organized in a **regular spatial grid** and taking on a **finite number of states**
- The state of each cell at a certain moment **evolves** according to a given **transition rule** depending on the present state of the cell itself and the states of the neighborhood
- The neighborhood can be defined in many ways

![Von Neumann neighborhood](image1)

![Moore neighborhood](image2)
• **Goal:** optimizing the configuration obtained with the AHP method

• **11 × 8 grid** superimposed on the study area
 - Cell dimensions 200 × 200 m

• **Two binary variables associated to each cell:**
 1. Absence (0) / presence (1) of a sensor (dynamical)
 2. Unpolluted (0) / polluted (1) area, as derived by the survey (fixed)

• **CA initialized with the sensors placed in the position determined by AHP**
CA dynamics

- At every iteration step each sensor moves in its Moore’s neighbourhood (or remains in the current position) according to a stochastic dynamics:
 - A probability is assigned to every possible movement of the sensor reflecting the coverage of the polluted areas that the movement will determine
 - The actual movement of the sensor is randomly extracted according to movements probabilities

- The new configuration is accepted if it results in an increase of global coverage, otherwise it is discarded and the system remains in the previous configuration

- The system evolves till it reaches a stable configuration...
Results

1st step
Sensors locations resulting from AHP

Final configuration
Sensors locations resulting from CA
Outlook

• A **real** air quality monitoring system is going to be implemented in Santa Maria degli Angeli

• A **more refined optimization** of the sensors positioning, considering levels of pollution determined using not only surveys but also
 • the **measurements** detected by the sensors
 • the **epidemiological data** regarding respiratory and cardiovascular diseases associated with long-term exposure to high levels of pollution

• When the sensors will be installed and when a **significant amount of data** will have been collected the **cellular automaton step** will be run again in order to possibly improve the configuration
The presented study is part of the PLANET project financed to Idea-Re S.r.l. by Regione Veneto (IT) POR FESR 2014-2020 Asse I Azione 1.1.1